Predicting bank loan recovery rates with neural networks

نویسنده

  • João A. Bastos
چکیده

This study evaluates the performance of feed-forward neural networks to model and forecast recovery rates of defaulted bank loans. In order to guarantee that the predictions are mapped into the unit interval, the neural networks are implemented with a logistic activation function in the output neuron. The statistical relevance of explanatory variables is assessed using the bootstrap technique. The results indicate that the variables which the neural network models use to derive their output coincide to a great extent with those that are significant in parametric regression models. Out-of-sample estimates of prediction errors suggest that neural networks may have better predictive ability than parametric regression models, provided the number of observations is sufficiently large. JEL Classification: G17; G21; G33; C45

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearest Neighbor Classifier Method for Making Loan Decision in Commercial Bank

Bank plays the central role for the economic development world-wide. The failure and success of the banking sector depends upon the ability to proper evaluation of credit risk. Credit risk evaluation of any potential credit application has remained a challenge for banks all over the world till today. Artificial neural network plays a tremendous role in the field of finance for making critical, ...

متن کامل

Credit Risk of Bank Customers can be Predicted from Customer's Attribute using Neural Network

The aim of this paper is to present a model based on Multilayer perceptron neural networks to recognize bad or good credit customers. Credit risk is one of the major problems in banking sector. Banks are faced with credit Risk while doing their tasks. Credit risk is the probability of non-repayment of bank loan granted to lenders. Decreasing Credit Risk, banks may perform better duties and resp...

متن کامل

The Comparison of Credit Risk between Artificial Neural Network and Logistic Regression Models in Tose-Taavon Bank in Guilan

One of the most important issues always facing banks and financial institutes is the issue of credit risk or the possibility of failure in the fulfillment of obligations by applicants who are receiving credit facilities. The considerable number of banks’ delayed loan payments all around the world shows the importance of this issue and the necessary consideration of this topic. Accordingly...

متن کامل

Neural network survival analysis for personal loan data

Traditionally, customer credit scoring aimed at distinguishing good payers from bad payers at the time of the loan application. However, the timing when customers become bad is also very interesting to investigate since it can provide the bank with the ability to compute the profitability over a customer’s lifetime and perform profit scoring. The problem statement of analysing when customers de...

متن کامل

Using Artificial Neural Networks in the Calculation of Mortgage Prepayment Risk

A mortgage loan comes with the option to prepay (part of) the full amount of the loanbefore the end of the contract. This is called mortgage prepayment, and poses a risk tothe bank issuing the mortgage due to the loss of future interest payments. This thesisreviews some general properties of artificial neural networks, which are then applied topredict prepayment probabilities on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010